Physics – Mathematical Physics
Scientific paper
2008-12-09
J. Algebra 324 (2010), 2742-2756
Physics
Mathematical Physics
15 pages, extended version
Scientific paper
10.1016/j.jalgebra.2010.08.009
We prove that there exists just one pair of complex four-dimensional Lie algebras such that a well-defined contraction among them is not equivalent to a generalized IW-contraction (or to a one-parametric subgroup degeneration in conventional algebraic terms). Over the field of real numbers, this pair of algebras is split into two pairs with the same contracted algebra. The example we constructed demonstrates that even in the dimension four generalized IW-contractions are not sufficient for realizing all possible contractions, and this is the lowest dimension in which generalized IW-contractions are not universal. Moreover, this is also the first example of nonexistence of generalized IW-contraction for the case when the contracted algebra is not characteristically nilpotent and, therefore, admits nontrivial diagonal derivations. The lower bound (equal to three) of nonnegative integer parameter exponents which are sufficient to realize all generalized IW-contractions of four-dimensional Lie algebras is also found.
Popovych Dmytro R.
Popovych Roman O.
No associations
LandOfFree
Lowest dimensional example on non-universality of generalized Inönü-Wigner contractions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Lowest dimensional example on non-universality of generalized Inönü-Wigner contractions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lowest dimensional example on non-universality of generalized Inönü-Wigner contractions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-282477