Physics
Scientific paper
Sep 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011natge...4..589m&link_type=abstract
Nature Geoscience, Volume 4, Issue 9, pp. 589-592 (2011).
Physics
1
Scientific paper
Saturn's moon Titan exhibits an active weather cycle that involves methane. Equatorial and mid-latitude clouds can be organized into fascinating morphologies on scales exceeding 1,000km (ref. ). Observations include an arrow-shaped equatorial cloud that produced detectable surface accumulation, probably from the precipitation of liquid methane. An analysis of an earlier cloud outburst indicated an interplay between high- and low-latitude cloud activity, mediated by planetary-scale atmospheric waves. Here we present a combined analysis of cloud observations and simulations with a three-dimensional general circulation model of Titan's atmosphere, to obtain a physical interpretation of observed storms, their relation to atmosphere dynamics and their aggregate effect on surface erosion. We find that planetary-scale Kelvin waves arise naturally in our simulations, and robustly organize convection into chevron-shaped storms at the equator during the equinoctial season. A second and much slower wave mode organizes convection into southern-hemisphere streaks oriented in a northwest-southeast direction, similar to observations. As a result of the phasing of these modes, precipitation rates can be as high as twenty times the local average in our simulations. We conclude that these events, which produce up to several centimetres of precipitation over length scales exceeding 1,000km, play a crucial role in fluvial erosion of Titan's surface.
Adamkovics Mate
Caballero Rodrigo
Mitchell Jonathan L.
Turtle Elizabeth Pope
No associations
LandOfFree
Locally enhanced precipitation organized by planetary-scale waves on Titan does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Locally enhanced precipitation organized by planetary-scale waves on Titan, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Locally enhanced precipitation organized by planetary-scale waves on Titan will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1458592