Nonlinear Sciences – Chaotic Dynamics
Scientific paper
1996-12-16
Nonlinearity, 11:151--173, 1998
Nonlinear Sciences
Chaotic Dynamics
22 pages, LaTex, 4 Figures
Scientific paper
10.1088/0951-7715/11/1/010
A general formula for the linearized Poincar\'e map of a billiard with a potential is derived. The stability of periodic orbits is given by the trace of a product of matrices describing the piecewise free motion between reflections and the contributions from the reflections alone. For the case without potential this gives well known formulas. Four billiards with potentials for which the free motion is integrable are treated as examples: The linear gravitational potential, the constant magnetic field, the harmonic potential, and a billiard in a rotating frame of reference, imitating the restricted three body problem. The linear stability of periodic orbits with period one and two is analyzed with the help of stability diagrams, showing the essential parameter dependence of the residue of the periodic orbits for these examples.
No associations
LandOfFree
Linear stability in billiards with potential does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Linear stability in billiards with potential, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear stability in billiards with potential will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-521956