Physics
Scientific paper
Nov 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004georl..3122701r&link_type=abstract
Geophysical Research Letters, Volume 31, Issue 22, CiteID L22701
Physics
17
Atmospheric Composition And Structure: Planetary Atmospheres (5405, 5407, 5409, 5704, 5705, 5707), Meteorology And Atmospheric Dynamics: Convective Processes, Meteorology And Atmospheric Dynamics: Turbulence, Oceanography: Physical: Fronts And Jets, Planetology: Fluid Planets: Atmospheres-Structure And Dynamics
Scientific paper
The banded patterns of cloud and wind are among the most striking features of the atmospheres of Jupiter and Saturn, but their dynamical origin remains poorly understood. Most approaches towards understanding zonation so far (also in the terrestrial oceans) have used highly idealized models to show that it might originate from dynamical anisotropy in a shallow turbulent fluid layer due to the planetary β-effect. Here we report the results of laboratory experiments, conducted on a 14-m diameter turntable, which quantitatively confirm that multiple zonal jets may indeed be generated and maintained by this mechanism in the presence of deep convection and a topographic β-effect. At the very small values of Ekman number (<=2 × 10-5) and large local Reynolds numbers (>=2000, based on jet scales) achieved, the kinetic energy spectra suggest the presence of both energy-cascading and enstrophy-cascading inertial ranges in addition to the zonation near twice the Rhines wave number.
Didelle Henri
Fincham A.
Hiro Yamazaki Y.
Lewis Reed S.
Miki-Yamazaki Kuniko
No associations
LandOfFree
Jupiter's and Saturn's convectively driven banded jets in the laboratory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Jupiter's and Saturn's convectively driven banded jets in the laboratory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Jupiter's and Saturn's convectively driven banded jets in the laboratory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1763257