Integrable Spin Chains with U(1)^3 symmetry and generalized Lunin-Maldacena backgrounds

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

16 pages, 3 figures, references corrected

Scientific paper

10.1088/1126-6708/2005/12/008

We consider the most general three-state spin chain with U(1)^3 symmetry and nearest neighbour interaction. Our model contains as a special case the spin chain describing the holomorphic three scalar sector of the three parameter complex deformation of N=4 SYM, dual to type IIB string theory in the generalized Lunin-Maldacena backgrounds discovered by Frolov. We formulate the coordinate space Bethe ansatz, calculate the S-matrix and determine for which choices of parameters the S-matrix fulfills the Yang-Baxter equations. For these choices of parameters we furthermore write down the R-matrix. We find in total four classes of integrable models. In particular, each already known model of the above type is nothing but one in a family of such models.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Integrable Spin Chains with U(1)^3 symmetry and generalized Lunin-Maldacena backgrounds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Integrable Spin Chains with U(1)^3 symmetry and generalized Lunin-Maldacena backgrounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrable Spin Chains with U(1)^3 symmetry and generalized Lunin-Maldacena backgrounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-555315

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.