Biology – Quantitative Biology – Molecular Networks
Scientific paper
2010-04-30
Biology
Quantitative Biology
Molecular Networks
5 page, 3 figures, IEEE-BIBE confrence
Scientific paper
Protein phosphorylation is a reversible post-translational modification commonly used by cell signaling networks to transmit information about the extracellular environment into intracellular organelles for the regulation of the activity and sorting of proteins within the cell. For this study we reconstructed a literature-based mammalian kinase-substrate network from several online resources. The interactions within this directed graph network connect kinases to their substrates, through specific phosphosites including kinase-kinase regulatory interactions. However, the "signs" of links, activation or inhibition of the substrate upon phosphorylation, within this network are mostly unknown. Here we show how we can infer the "signs" indirectly using data from quantitative phosphoproteomics experiments applied to mammalian cells combined with the literature-based kinase-substrate network. Our inference method was able to predict the sign for 321 links and 153 phosphosites on 120 kinases, resulting in signed and directed subnetwork of mammalian kinase-kinase interactions. Such an approach can rapidly advance the reconstruction of cell signaling pathways and networks regulating mammalian cells.
Hernandez Marylens
Lachmann Alexander
Ma'ayan Avi
Xiao Kunhong
Zhao Shan
No associations
LandOfFree
Inferring the Sign of Kinase-Substrate Interactions by Combining Quantitative Phosphoproteomics with a Literature-Based Mammalian Kinome Network does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Inferring the Sign of Kinase-Substrate Interactions by Combining Quantitative Phosphoproteomics with a Literature-Based Mammalian Kinome Network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inferring the Sign of Kinase-Substrate Interactions by Combining Quantitative Phosphoproteomics with a Literature-Based Mammalian Kinome Network will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-539259