Physics – Optics
Scientific paper
Aug 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009spie.7448e...9h&link_type=abstract
Advances in X-Ray/EUV Optics and Components IV. Edited by Khounsary, Ali M.; Morawe, Christian; Goto, Shunji. Proceedings of th
Physics
Optics
Scientific paper
We have been developing a thin-foil-nested X-ray telescope (XRT) for the Japanese X-ray astronomy satellites since ASCA launched in 1993. The thin-foil-nested XRT is advantageous in realizing high throughput with a light weight, whilst its angular resolution is poorer than other mirrors using, for example, a polished thick glass substrate onboard Chandra. We have investigated causes of image degradation of our XRT, and have identified them as figure error and positioning error of the reflectors. Since the latter dominates the entire error budget, we first attempted to improve the positioning error, and adopted the following two methods. First, we substituted an alignment plate for the alignment bar. The alignment plate incorporates the independently movable four alignment bars adopted for ASCA and Suzaku into a single plate. In practice, we allocated a pair of the plate in each slot, and after inserting all the reflectors, we shifted one of the plates radially to tightly hold the reflectors. Second, we have manufactured a partially replicated foil in which reflecting material (Au) is not applied to the axial edges of the foils in order to control the foil position by the edges of the reflectors whose thickness variation is within 2 μm. After these improvements on the positioning error, we moved onto the figure error issue. With X-ray and laser profilometer measurements, we found that the figure error increased in a area closer to the azimuthal edges of the reflector. After considerable struggle for improvement, we finally decided to produce a long reflector and to cut both azimuthal edges. Thanks to these new devices, we have reduced the positioning error from 1.5 arcmin to 0.66. Furthermore, we have successfully produced 40-pairs of reflectors whose figure error is less than 0.8 arcmin. Incorporating these reflectors into a mirror housing, we have measured the XRT performance in the 30 m beamline facility at ISAS/JAXA, and confirmed to achieve an angular resolution of 1.08 arcmin in half-power diameter. The effective area is measured to be 14.0 cm2, which is ~90% of the designed value. Note that this number is significantly enhanced from ~80% in the Suzaku XRT, which is a by-product of the improvement of the angular resolution.
Hayashi Takayuki
Ishida Manabu
Maeda Yoshitomo
Mori Hideyuki
Nakamura Ryoko
No associations
LandOfFree
Improvement of the angular resolution of a thin-foil-nested x-ray telescope does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Improvement of the angular resolution of a thin-foil-nested x-ray telescope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Improvement of the angular resolution of a thin-foil-nested x-ray telescope will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1304360