Physics
Scientific paper
Sep 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006georl..3317704s&link_type=abstract
Geophysical Research Letters, Volume 33, Issue 17, CiteID L17704
Physics
4
Biogeosciences: Climate Dynamics (1620), Atmospheric Processes: Climate Change And Variability (1616, 1635, 3309, 4215, 4513), Atmospheric Processes: Climatology (1616, 1620, 3305, 4215, 8408), Atmospheric Processes: Global Climate Models (1626, 4928), Paleoceanography: Global Climate Models (1626, 3337)
Scientific paper
The impact of the differences in the oceanic heat uptake and storage on the transient response to changes in radiative forcing is investigated using two newly developed coupled atmosphere-ocean models. In spite of its larger equilibrium climate sensitivity, one model (CM2.1) has smaller transient globally averaged surface air temperature (SAT) response than is found in the second model (CM2.0). The differences in the SAT response become larger as radiative forcing increases and the time scales become longer. The smaller transient SAT response in CM2.1 is due to its larger oceanic heat uptake. The heat storage differences between the two models also increase with time and larger rates of radiative forcing. The larger oceanic heat uptake in CM2.1 can be traced to differences in the Southern Ocean heat uptake and is related to a more realistic Southern Ocean simulation in the control integration.
Russell Joellen
Spelman Michael J.
Stouffer Ronald J.
No associations
LandOfFree
Importance of oceanic heat uptake in transient climate change does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Importance of oceanic heat uptake in transient climate change, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Importance of oceanic heat uptake in transient climate change will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1079046