Physics – Optics
Scientific paper
2011-01-04
Front. Phys. China, 2010, 5(3): 277-290
Physics
Optics
This is a review paper
Scientific paper
Although the invention of the metamaterials has stimulated the interest of many researchers and possesses many important applications, the basic design idea is very simple: composing effective media from many small structured elements and controlling its artificial EM properties. According to the effective-media model, the coupling interactions between the elements in metamaterials are somewhat ignored; therefore, the effective properties of metamaterials can be viewed as the "averaged effect" of the resonance property of the individual elements. However, the coupling interaction between elements should always exist when they are arranged into metamaterials. Sometimes, especially when the elements are very close, this coupling effect is not negligible and will have a substantial effect on the metamaterials' properties. In recent years, it has been shown that the interaction between resonance elements in metamaterials could lead to some novel phenomena and interesting applications that do not exist in conventional uncoupled metamaterials. In this paper, we will give a review of these recent developments in coupled metamaterials. For the "meta-molecule" composed of several identical resonators, the coupling between these units produces multiple discrete resonance modes due to hybridization. In the case of a "meta-crystal" comprising an infinite number of resonators, these multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable coupled metamaterial may have interesting applications. Many novel metamaterials and nanophotonic devices could be developed from coupled resonator systems in the future.
Li Tiancheng
Liu Hui
Wang Shu-ming
Zhu Shi-Ning
No associations
LandOfFree
Hybridization effect in coupled metamaterials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Hybridization effect in coupled metamaterials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybridization effect in coupled metamaterials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-74971