Physics – Mathematical Physics
Scientific paper
2007-02-08
Physics
Mathematical Physics
34 pages, 6 figures, submitted to Comm. Math. Sci
Scientific paper
We study the problem of homogenization for inertial particles moving in a time dependent random velocity field and subject to molecular diffusion. We show that, under appropriate assumptions on the velocity field, the large--scale, long--time behavior of the inertial particles is governed by an effective diffusion equation for the position variable alone. This is achieved by the use of a formal multiple scales expansion in the scale parameter. The expansion relies on the hypoellipticity of the underlying diffusion. An expression for the diffusivity tensor is found and various of its properties are studied. The results of the formal multiscale analysis are justified rigorously by the use of the martingale central limit theorem. Our theoretical findings are supported by numerical investigations where we study the parametric dependence of the effective diffusivity on the various non--dimensional parameters of the problem.
Pavliotis Greg A.
Stuart Andrew M.
Zygalakis K. C.
No associations
LandOfFree
Homogenization for Inertial Particles in a Random Flow does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Homogenization for Inertial Particles in a Random Flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Homogenization for Inertial Particles in a Random Flow will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-433159