Mathematics – Analysis of PDEs
Scientific paper
2006-11-11
Mathematics
Analysis of PDEs
Scientific paper
A linear system of differential equations describing a joint motion of thermoelastic porous body and thermofluid occupying porous space is considered. Although the problem is linear, it is very hard to tackle due to the fact that its main differential equations involve non-smooth oscillatory coefficients, both big and small, under the differentiation operators. The rigorous justification, under various conditions imposed on physical parameters, is fulfilled for homogenization procedures as the dimensionless size of the pores tends to zero, while the porous body is geometrically periodic. As the results, we derive Biot's like system of equations of thermo-poroelasticity, system of equations of thermo-viscoelasticity, or decoupled system consisting of non-isotropic Lam\'{e}'s equations for thermoelastic solid and Darcy's system of filtration for thermofluid, depending on ratios between physical parameters. The proofs are based on Nguetseng's two-scale convergence method of homogenization in periodic structures.
No associations
LandOfFree
Homogenization and Filtration and Seismic Acoustic Problems in Thermo-elastic Porous Media does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Homogenization and Filtration and Seismic Acoustic Problems in Thermo-elastic Porous Media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Homogenization and Filtration and Seismic Acoustic Problems in Thermo-elastic Porous Media will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-406144