Holographic Renormalization of Asymptotically Flat Spacetimes

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

30 pages, no figures; 2 new appendices added, arguments clarified concerning variational principle, references added

Scientific paper

10.1088/0264-9381/23/9/010

A new local, covariant ``counter-term'' is used to construct a variational principle for asymptotically flat spacetimes in any spacetime dimension $ d \ge 4$. The new counter-term makes direct contact with more familiar background subtraction procedures, but is a local algebraic function of the boundary metric and Ricci curvature. The corresponding action satisfies two important properties required for a proper treatment of semi-classical issues and, in particular, to connect with any dual non-gravitational description of asymptotically flat space. These properties are that 1) the action is finite on-shell and 2) asymptotically flat solutions are stationary points under {\it all} variations preserving asymptotic flatness; i.e., not just under variations of compact support. Our definition of asymptotic flatness is sufficiently general to allow the magentic part of the Weyl tensor to be of the same order as the electric part and thus, for d=4, to have non-vanishing NUT charge. Definitive results are demonstrated when the boundary is either a cylindrical or a hyperbolic (i.e., de Sitter space) representation of spacelike infinity ($i^0$), and partial results are provided for more general representations of $i^0$. For the cylindrical or hyperbolic representations of $i^0$, similar results are also shown to hold for both a counter-term proportional to the square-root of the boundary Ricci scalar and for a more complicated counter-term suggested previously by Kraus, Larsen, and Siebelink. Finally, we show that such actions lead, via a straightforward computation, to conserved quantities at spacelike infinity which agree with, but are more general than, the usual (e.g., ADM) results.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Holographic Renormalization of Asymptotically Flat Spacetimes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Holographic Renormalization of Asymptotically Flat Spacetimes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Holographic Renormalization of Asymptotically Flat Spacetimes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-293859

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.