Physics – Mathematical Physics
Scientific paper
2009-04-21
SIGMA 5 (2009), 049, 21 pages
Physics
Mathematical Physics
Scientific paper
10.1007/s00220-008-0708-x
The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form $-d^2/dx^2+V(g;x)$, where the potential is an elliptic function depending on a coupling vector $g\in{\mathbb R}^4$. Alternatively, this operator arises from the $BC_1$ specialization of the $BC_N$ elliptic nonrelativistic Calogero-Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on $g$, we associate to this operator a self-adjoint operator $H(g)$ on the Hilbert space ${\mathcal H}=L^2([0,\omega_1],dx)$, where $2\omega_1$ is the real period of $V(g;x)$. For this association and a further analysis of $H(g)$, a certain Hilbert-Schmidt operator ${\mathcal I}(g)$ on ${\mathcal H}$ plays a critical role. In particular, using the intimate relation of $H(g)$ and ${\mathcal I}(g)$, we obtain a remarkable spectral invariance: In terms of a coupling vector $c\in{\mathbb R}^4$ that depends linearly on $g$, the spectrum of $H(g(c))$ is invariant under arbitrary permutations $\sigma(c)$, $\sigma\in S_4$.
No associations
LandOfFree
Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-371637