Physics
Scientific paper
Aug 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007e%26psl.260...72m&link_type=abstract
Earth and Planetary Science Letters, Volume 260, Issue 1-2, p. 72-85.
Physics
2
Scientific paper
Martian meteorites provide crucial insights into Martian evolution and interplanetary mass transfer, including the potential for exogenesis. ALH84001 is the oldest Martian meteorite discovered so far, and has been used to derive important conclusions about Martian surface temperatures and very low-temperature Mars-to-Earth transfer. To better constrain the thermal evolution and shock metamorphic history of ALH84001, we applied (U Th)/He thermochronometry to single grains of phosphate (merrillite) from ALH84001. The (U Th)/He ages of individual phosphate grains in ALH84001 range from 60 Ma to 1.8 Ga, with a weighted mean of ~830 Ma. This broad age distribution reflects multiple diffusion domains, and requires a relatively high-temperature resetting event younger than ˜ 60 Ma. These new data are combined with the published whole-rock (maskelynite as a main Ar reservoir) 40Ar/39Ar age spectra which show 5 8% fractional loss of radiogenic 40Ar since 4.0 Ga. He diffusion in both terrestrial and extraterrestrial apatite has a significantly higher activation energy (138 ˜ 184 kJ/mol) than Ar diffusion in maskelynite (75 kJ/mol), leading to an important “kinetic crossover” in fractional loss contours for these systems. Taken together, the phosphate (U Th)/He and whole-rock 40Ar/39Ar ages require both very low surface temperatures on Mars, and one or more short-lived, high-temperature, shock events after 4.0 Ga. We suggest that the last shock event occurred with ejection of ALH84001 from Mars, and reached a peak temperature of approximately 400 °C. These results undermine the proposed low-temperature ejection hypothesis for ALH84001, but support long-lived extremely cold Martian surface temperatures.
Min Kyoungwon
Reiners Peter W.
No associations
LandOfFree
High-temperature Mars-to-Earth transfer of meteorite ALH84001 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with High-temperature Mars-to-Earth transfer of meteorite ALH84001, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-temperature Mars-to-Earth transfer of meteorite ALH84001 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-970810