Physics
Scientific paper
Aug 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006georl..3315307s&link_type=abstract
Geophysical Research Letters, Volume 33, Issue 15, CiteID L15307
Physics
23
Mineral Physics: Creep And Deformation, Mineral Physics: High-Pressure Behavior, Mineral Physics: X-Ray, Neutron, And Electron Spectroscopy And Diffraction
Scientific paper
Our X-ray diffraction measurements reveal that Mn2O3 undergoes a phase transition to the CaIrO3 type, which is proposed for the post-perovskite in MgSiO3, at 27-38 GPa and 300 K, bypassing the other phase transitions observed in sesquioxides. Small distortions in the polyhedra after the transition indicate that the Jahn-Teller effect, which is strong at ambient conditions, is suppressed during the transition. The CaIrO3-type phase exhibits strong preferred orientation of the (010) plane perpendicular to the loading axis before annealing whereas preferred orientation of the (100) and (110) planes was observed after annealing. The pre-annealing texture may result from either the deformation under strong differential stresses or the phase transition. The post-annealing texture may be related to either lower differential stresses or thermal annealing. Our result shows that the texture of the CaIrO3 type can be sensitive to phase transition and annealing as well as differential stresses.
Prakapenka Vitali B.
Santillán Javier
Shen Guoyin
Shim Sang-Heon
No associations
LandOfFree
High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3 type does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3 type, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3 type will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1780450