Hamilton-Jacobi equations and Brane associated Lagrangians

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

23 pages,LaTeX2e, clarified text, generalised proof in appendix

Scientific paper

10.1016/S0550-3213(00)00703-3

This article seeks to relate a recent proposal for the association of a covariant Field Theory with a string or brane Lagrangian to the Hamilton-Jacobi formalism for strings and branes. It turns out that since in this special case, the Hamiltonian depends only upon the momenta of the Jacobi fields and not the fields themselves, it is the same as a Lagrangian, subject to a constancy constraint. We find that the associated Lagrangians for strings or branes have a covariant description in terms of the square root of the same Lagrangian. If the Hamilton-Jacobi function is zero, rather than a constant, then it is in in one dimension lower, reminiscent of the `holographic' idea. In the second part of the paper, we discuss properties of these Lagrangians, which lead to what we have called `Universal Field Equations', characteristic of covariant equations of motion.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Hamilton-Jacobi equations and Brane associated Lagrangians does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Hamilton-Jacobi equations and Brane associated Lagrangians, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hamilton-Jacobi equations and Brane associated Lagrangians will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-305345

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.