Halophilic life on Mars ?

Biology – Quantitative Biology – Biomolecules

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Background: The search for extraterrestrial life has been declared as a goal for the 21th century by several space agencies. Potential candidates are microorganisms on or in the surface of moons and planets, such as Mars. Extremely halophilic archaea (haloarchaea) are of astrobiological interest since viable strains have been isolated from million years old salt deposits (1) and halite has been found in Martian meteorites and in surface pools. Therefore, haloarchaeal responses to simulated and real space conditions were explored. Immuno assays for a potential Life Marker Chip experiment were developed with antisera against the universal enzyme ATP synthase. Methods: The focus of these studies was on the application of fluorescent probes since they provide strong signals, and detection devices are suitable for miniaturization. Viability of haloarchaeal strains (Halococcus dombrowskii and Halobacterium salinarum NRC-1) was probed with the LIVE/DEAD BacLight™ kit and the BacLight™ Bacterial Membrane Potential kit. Cyclobutane pyrimidine dimers (CPD) in the DNA, following exposure to simulated and real space conditions (UV irradiation from 200 - 400 nm; 18 months exposure on the International Space Station [ISS] within the ADAPT experiment by Dr. P. Rettberg), were detected with fluorescent Alexa-Fluor-488-coupled antibodies. Immuno assays with antisera against the A-ATPase subunits from Halorubrum saccharovorum were carried out with the highly sensitive Immun-Star ™ WesternC ™ chemiluminescent kit (Bio-Rad). Results: Using the LIVE/DEAD BacLight™ kit, the D37 (dose of 37% survival) for Hcc. dombrowskii and Hbt. salinarum NRC-1, following exposure to UV (200-400 nm) was about 400 kJ/m2, when cells were embedded in halite and about 1 kJ/m2, when cells were in liquid cultures. Fluorescent staining indicated a slightly higher cellular activity than that which was derived from the determination of colony forming units. Assessment of viability with the BacLight™ Bacterial Membrane Potential kit gave strong signals with Hcc. dombrowskii and the control microorganism E. coli; as expected, the uncoupler CCCP diminished the membrane potential. Reaction times were generally longer with Hcc. dombrowskii than with E. coli. Hcc. dombrowskii from the ISS experiment showed > 80% viable cells when judged with the LIVE/DEAD kit. CPD formation was detectable in about 3-5 % of the total cells. It is not yet known if growing cells of Hcc. dombrowskii were recovered from the ISS. ATPase subunits were detected in crude membrane preparations, in whole haloarchaeal and bacterial cells, and even in spores (from Geobacillus stearothermophilus), suggesting the usefulness of the ATP synthase as a molecular target for life detection. Conclusions: Fluorescent dyes provide strong signals, which are suitable for remote detection and are compatible with high ionic strength. The advantages of staining with fluorescent dyes are rapid results on membrane intactness, membrane potential, and the presence of certain biomolecules. But more data are needed for a better correlation to cellular viability. (1) Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int System Evol Microbiol 52, 1807-1814.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Halophilic life on Mars ? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Halophilic life on Mars ?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Halophilic life on Mars ? will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-917179

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.