Halogen emissions from a small volcanic eruption: Modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4

Atmospheric Composition And Structure: Middle Atmosphere: Constituent Transport And Chemistry (3334), Atmospheric Composition And Structure: Volcanic Effects (8409), Atmospheric Processes: Land/Atmosphere Interactions (1218, 1631, 1843)

Scientific paper

Aircraft measurements in the Hekla, Iceland volcanic plume in February 2000 revealed large quantities of hydrogen halides within the stratosphere correlated to volcanic SO2. Investigation of the longer-term stratospheric impact of these emissions, using the 3D chemical transport model, SLIMCAT suggests that volcanic enhancements of H2O and HNO3 increased HNO3.3H2O particle availability within the plume. These particles activated volcanic HCl and HBr, enhancing model plume concentrations of ClOx (20 ppb) and BrOx (50 ppt). Model O3 concentrations decreased to near-zero in places, and plume average O3 remained 30% lower after two weeks. Reductions in the model O3 column reduced UV shielding by 15% for 2 days. Plume incorporation into the winter polar vortex after 1 March elevated model vortex Cly and Bry by 0.15 ppb and 7 ppt respectively, and doubled vortex ClOx and BrO. Model results agree quantitatively with the observations made by the DC-8 aircraft.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Halogen emissions from a small volcanic eruption: Modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Halogen emissions from a small volcanic eruption: Modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Halogen emissions from a small volcanic eruption: Modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-906914

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.