Gravitational waves in the presence of a cosmological constant

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

20 pages, 1 figure

Scientific paper

We derive the effects of a non-zero cosmological constant $\Lambda$ on gravitational wave propagation in the linearized approximation of general relativity. In this approximation we consider the situation where the metric can be written as $g_{\mu\nu}= \eta_{\mu\nu}+ h_{\mu\nu}^\Lambda + h_{\mu\nu}^W$, $h_{\mu\nu}^{\Lambda,W}<< 1$, where $h_{\mu\nu}^{\Lambda}$ is the background perturbation and $h_{\mu\nu}^{W}$ is a modification interpretable as a gravitational wave. For $\Lambda \neq 0$ this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized solutions have to be reinterpreted in a coordinate system that is homogeneous and isotropic to make contact with observations. Plane waves in the linear theory acquire modifications of order $\sqrt{\Lambda}$, both in the amplitude and the phase, when considered in FRW coordinates. In the linearization process for $h_{\mu\nu}$, we have also included terms of order $\mathcal{O}(\Lambda h_{\mu\nu})$. For the background perturbation $h_{\mu\nu}^\Lambda$ the difference is very small but when the term $h_{\mu\nu}^{W}\Lambda$ is retained the equations of motion can be interpreted as describing massive spin-2 particles. However, the extra degrees of freedom can be approximately gauged away, coupling to matter sources with a strength proportional to the cosmological constant itself. Finally we discuss the viability of detecting the modifications caused by the cosmological constant on the amplitude and phase of gravitational waves. In some cases the distortion with respect to gravitational waves propagating in Minkowski space-time is considerable. The effect of $\Lambda$ could have a detectable impact on pulsar timing arrays.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Gravitational waves in the presence of a cosmological constant does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Gravitational waves in the presence of a cosmological constant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gravitational waves in the presence of a cosmological constant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-207121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.