Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

New Astronomy Reviews, in press

Scientific paper

In this work, goodness-of-fit tests are adapted and applied to CMB maps to detect possible non-Gaussianity. We use Shapiro-Francia test and two Smooth goodness-of-fit tests: one developed by Rayner and Best and another one developed by Thomas and Pierce. The Smooth tests test small and smooth deviations of a prefixed probability function (in our case this is the univariate Gaussian). Also, the Rayner and Best test informs us of the kind of non-Gaussianity we have: excess of skewness, of kurtosis, and so on. These tests are optimal when the data are independent. We simulate and analyse non-Gaussian signals in order to study the power of these tests. These non-Gaussian simulations are constructed using the Edgeworth expansion, and assuming pixel-to-pixel independence. As an application, we test the Gaussianity of the MAXIMA data. Results indicate that the MAXIMA data are compatible with Gaussianity. Finally, the values of the skewness and kurtosis of MAXIMA data are constrained by |S| \le 0.035 and |K| \le 0.036 at the 99% confidence level.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-160794

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.