Physics – Atomic and Molecular Clusters
Scientific paper
2007-06-08
J. Phys. Chem. C 111, 14862 (2007)
Physics
Atomic and Molecular Clusters
Scientific paper
Likely candidates for the global potential energy minima of (H$_{2}$O)$_{n}$ clusters with $n\leq21$ on the (0001)-surface of graphite are found using basin-hopping global optimization. The potential energy surfaces are constructed using the TIP4P intermolecular potentials for the water molecules (the TIP3P is also explored as a secondary choice), a Lennard-Jones water-graphite potential, and a water-graphite polarization potential that is built from classical electrostatic image methods and takes into account both the perpendicular and parallel electric polarizations of graphite. This potential energy surface produces a rather hydrophobic water-graphite interaction. As a consequence, the water component of the lowest graphite-(H$_{2}$O)$_{n}$ minima is quite closely related to low-lying minima of the corresponding TIP4P (H$_{2}$O)$_{n}$ clusters. In about half of the cases the geometrical substructure of the water molecules in the graphite-(H$_{2}$O)$_{n}$ global minimum coincides with that of the corresponding free water cluster. Exceptions occur when the interaction with graphite induces a change in geometry. A comparison of our results with available theoretical and experimental data is performed.
Breton Jacques
Gomez Llorente J. M.
González B. S.
Hernandez-Rojas Javier
No associations
LandOfFree
Global Potential Energy Minima of (H$_{2}$O)$_{n}$ Clusters on Graphite does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Global Potential Energy Minima of (H$_{2}$O)$_{n}$ Clusters on Graphite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Global Potential Energy Minima of (H$_{2}$O)$_{n}$ Clusters on Graphite will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-652687