Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
2002-11-12
Physics
High Energy Physics
High Energy Physics - Theory
13 pages, LATEX, amsfonts, latexsym
Scientific paper
The singular part of the \textit{operator product expansion} (OPE) of a pair of \textit{globally conformal invariant} (GCI) scalar fields $\phi$ of (integer) dimension $d$ can be written as a sum of the 2-point function of $\phi$ and $d-1$ bilocal conformal fields $V_{\nu}(x_1, x_2)$ of dimension $(\nu, \nu)$, $\nu = 1, ..., d-1$. As the correlation functions of $\phi(x)$ are proven to be rational [6], we argue that the correlation functions of $V_{\nu}$ can also be assumed rational. Each $V_{\nu}(x_1, x_2)$ is expanded into local symmetric tensor fields of \textit{twist} (dimension minus rank) $2\nu$. The case $d=2$, considered previously [5], is briefly reviewed and current work on the $d=4$ case (of a Lagrangean density in 4 space--time dimensions) is previewed.
Nikolov Nikolay M.
Stanev Yassen S.
Todorov Ivan T.
No associations
LandOfFree
Global Conformal Invariance and Bilocal Fields with Rational Correlation Functions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Global Conformal Invariance and Bilocal Fields with Rational Correlation Functions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Global Conformal Invariance and Bilocal Fields with Rational Correlation Functions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-19362