Nonlinear Sciences – Chaotic Dynamics
Scientific paper
1996-07-31
Nonlinear Sciences
Chaotic Dynamics
3 pages in REVTeX, 5 postscript figures separately, submitted to Phys. Rev. E
Scientific paper
10.1103/PhysRevE.54.R4524
The formation of zonal flows and vortices in the generalized Charney-Hasegawa-Mima equation is studied. We focus on the regime when the size of structures is comparable to or larger than the deformation (Rossby) radius. Numerical simulations show the formation of anticyclonic vortices in unstable shear flows and ring-like vortices with quiescent cores and vorticity concentrated in a ring. Physical mechanisms that lead to these phenomena and their relevance to turbulence in planetary atmospheres are discussed.
Kukharkin Nikolai
Orszag Steven A.
No associations
LandOfFree
Generation and Structure of Solitary Rossby Vortices in Rotating Fluids does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Generation and Structure of Solitary Rossby Vortices in Rotating Fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generation and Structure of Solitary Rossby Vortices in Rotating Fluids will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-588353