Physics – Optics
Scientific paper
Sep 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007eso..pres...40.&link_type=abstract
ESO Press Release, 09/2007
Physics
Optics
Scientific paper
Galaxies found under the Glare of Cosmic Flashlights
Astronomers using ESO's Very Large Telescope have discovered in a single pass about a dozen otherwise invisible galaxies halfway across the Universe. The discovery, based on a technique that exploits a first-class instrument, represents a major breakthrough in the field of galaxy 'hunting'. ESO PR Photo 40a/07 ESO PR Photo 40a/07 Newly Found Galaxies (SINFONI/VLT)
The team of astronomers led by Nicolas Bouché have used quasars to find these galaxies. Quasars are very distant objects of extreme brilliance, which are used as cosmic beacons that reveal galaxies lying between the quasar and us. The galaxy's presence is revealed by a 'dip' in the spectrum of the quasar - caused by the absorption of light at a specific wavelength.
The team used huge catalogues of quasars, the so-called SDSS and 2QZ catalogues, to select quasars with dips. The next step was then to observe the patches of the sky around these quasars in search for the foreground galaxies from the time the Universe was about 6 billion years old, almost half of its current age.
"The difficulty in actually spotting and seeing these galaxies stems from the fact that the glare of the quasar is too strong compared to the dim light of the galaxy," says Bouché.
This is where observations taken with SINFONI on ESO's VLT made the difference. SINFONI is an infrared 'integral field spectrometer' that simultaneously delivers very sharp images and highly resolved colour information (spectra) of an object on the sky. ESO PR Photo 32e/07 ESO PR Photo 40b/07 Chasing 'Hidden' Galaxies (Artist's Impression)
With this special technique, which untangles the light of the galaxy from the quasar light, the team detected 14 galaxies out of the 20 pre-selected quasar patches of sky, a hefty 70% success rate.
"This high detection rate alone is a very exciting result," says Bouché. "But, these are not just ordinary galaxies: they are most notable ones, actively forming a lot of new stars and qualifying as 'starburst galaxies'."
"We discovered that the galaxies located near the quasar sightlines are forming stars at a prodigious rate, equivalent to 20 suns per year," adds team member Celine Péroux.
These findings represent a big leap forward in the field, setting the stage for a very promising era of galaxy 'hunting'.
The astronomers now plan to use SINFONI to study in more detail each of these galaxies, by measuring their internal motions. Note
SINFONI is a combination of a novel infrared 'integral field spectrometer' (SPIFFI) and a special adaptive optics module (MACAO). The integral field module SPIFFI gives detailed colour, or spectral, information for each of 2000 spatial points on the sky, arranged over a contiguous two dimensional field of 32 times 64 pixels. SINFONI was developed and built by an international consortium consisting of the Max Planck Institute for Extraterrestrial Physics, Garching, Germany, ESO, and NOVA, Leiden, the Netherlands (see ESO PR 21/04).
No affiliations
No associations
LandOfFree
Galaxy 'Hunting' Made Easy does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Galaxy 'Hunting' Made Easy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Galaxy 'Hunting' Made Easy will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-965500