Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1994-09-16
Int.J.Mod.Phys. A13 (1998) 1651-1708
Physics
High Energy Physics
High Energy Physics - Theory
68 pages
Scientific paper
10.1142/S0217751X9800072X
A representation of the group element (also known as ``universal ${\cal T}$-matrix'') which satisfies $\Delta(g) = g\otimes g$, is given in the form $$ g = \left(\prod_{s=1}^{d_B}\phantom.^>\ {\cal E}_{1/q_{i(s)}}(\chi^{(s)}T_{-i(s)})\right) q^{2\vec\phi\vec H} \left(\prod_{s=1}^{d_B}\phantom.^<\ {\cal E}_{q_{i(s)}}(\psi^{(s)} T_{+i(s)})\right)$$ where $d_B = \frac{1}{2}(d_G - r_G)$, $q_i = q^{|| \vec\alpha_i||^2/2}$ and $H_i = 2\vec H\vec\alpha_i/||\vec\alpha_i||^2$ and $T_{\pm i}$ are the generators of quantum group associated respectively with Cartan algebra and the {\it simple} roots. The ``free fields'' $\chi,\ \vec\phi,\ \psi$ form a Heisenberg-like algebra: $\psi^{(s)}\psi^{(s')} = q^{-\vec\alpha_{i(s)} \vec\alpha_{i(s')}} \psi^{(s')}\psi^{(s)}, & \chi^{(s)}\chi^{(s')} = q^{-\vec\alpha_{i(s)}\vec\alpha_{i(s')}} \chi^{(s')}\chi^{(s)}& {\rm for} \ s 0}^{d_B}{\cal E}_{q_{\vec\alpha}}\left(-(q_{\vec\alpha}- q_{\vec\alpha}^{-1})T_{\vec\alpha}\otimes T_{-\vec\alpha}\right).$$
Morozov Alexei
Vinet Luc
No associations
LandOfFree
Free-Field Representation of Group Element for Simple Quantum Group does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Free-Field Representation of Group Element for Simple Quantum Group, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Free-Field Representation of Group Element for Simple Quantum Group will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-566346