Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1998-02-12
Lett.Math.Phys. 41 (1997) 207-225
Physics
High Energy Physics
High Energy Physics - Theory
LaTeX, 19 pages, no figure. Based on a talk given at the Luminy meeting on "W-algebras: Extended conformal symmetries", Marsei
Scientific paper
Since the appearance of the paper by Bilal & al. in 1991, it has been widely assumed that W-algebras originating from the Hamiltonian reduction of an SL(n,C)-bundle over a Riemann surface give rise to a flat connection, in which the Beltrami differential may be identified. In this Letter, it is shown that the use of the Beltrami parametrisation of complex structures on a compact Riemann surface over which flat complex vector bundles are considered, allows to construct the above mentioned flat connection. It is stressed that the modulus of the Beltrami differential is of necessity less than one, and that solutions of the so-called Beltrami equation give rise to an orientation preserving smooth change of local complex coordinates. In particular, the latter yields a smooth equivalence between flat complex vector bundles. The role of smooth diffeomorphisms which induce equivalent complex structures is specially emphasized. Furthermore, it is shown that, while the construction given here applies to the special case of the Virasoro algebra, the extension to flat complex vector bundles of arbitrary rank does not provide "generalizations" of the Beltrami differential usually considered as central objects for such non-linear symmetries.
No associations
LandOfFree
Flat Complex Vector Bundles, The Beltrami Differential and W-Algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Flat Complex Vector Bundles, The Beltrami Differential and W-Algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flat Complex Vector Bundles, The Beltrami Differential and W-Algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-60265