Physics – Quantum Physics
Scientific paper
2009-04-28
Phys. Rev. A 80, 012321 (2009)
Physics
Quantum Physics
20 pages, 5 figures
Scientific paper
In this work the topological order at finite temperature in two-dimensional color code is studied. The topological entropy is used to measure the behavior of the topological order. Topological order in color code arises from the colored string-net structures. By imposing the hard constrained limit the exact solution of the entanglement entropy becomes possible. For finite size systems, by raising the temperature, one type of string-net structure is thermalized and the associative topological entropy vanishes. In the thermodynamic limit the underlying topological order is fragile even at very low temperatures. Taking first the thermodynamic limit and then the zero-temperature limit and vice versa does not commute, and their difference is related only to the topology of regions. The contribution of the colors and symmetry of the model in the topological entropy is also discussed. It is shown how the gauge symmetry of the color code underlies the topological entropy.
No associations
LandOfFree
Finite temperature topological order in 2D topological color codes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Finite temperature topological order in 2D topological color codes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finite temperature topological order in 2D topological color codes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-510854