Finding decompositions of a class of separable states

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

By definition a separable state has the form \sum A_i \otimes B_i, where 0 \leq A_i, B_i for each i. In this paper we consider the class of states which admit such a decomposition with B_1, ..., B_p having independent images. We give a simple intrinsic characterization of this class of states, and starting with a density matrix in this class, describe a procedure to find such a decomposition with B_1, ..., B_p having independent images, and A_1, ..., A_p being distinct with unit trace. Such a decomposition is unique, and we relate this to the facial structure of the set of separable states. A special subclass of such separable states are those for which the rank of the matrix matches one marginal rank. Such states have arisen in previous studies of separability (e.g., they are known to be a class for which the PPT condition is equivalent to separability). The states investigated also include a class that corresponds (under the Choi-Jamio{\l}kowski isomorphism) to the quantum channels called quantum-classical and classical-quantum by Holevo.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Finding decompositions of a class of separable states does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Finding decompositions of a class of separable states, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finding decompositions of a class of separable states will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-126084

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.