Physics – Quantum Physics
Scientific paper
2008-09-28
Phys. Rev. A 78 (2008) 062712
Physics
Quantum Physics
12 pages, 9 figures
Scientific paper
10.1103/PhysRevA.78.062712
The projection-operator formalism of Feshbach is applied to resonance scattering in a single-channel case. The method is based on the division of the full function space into two segments, internal (localized) and external (infinitely extended). The spectroscopic information on the resonances is obtained from the non-Hermitian effective Hamilton operator $H_{\rm eff}$ appearing in the internal part due to the coupling to the external part. As well known, additional so-called cut-off poles of the $S$-matrix appear, generally, due to the truncation of the potential. We study the question of spurious $S$ matrix poles in the framework of the Feshbach formalism. The numerical analysis is performed for exactly solvable potentials with a finite number of resonance states. These potentials represent a generalization of Bargmann-type potentials to accept resonance states. Our calculations demonstrate that the poles of the $S$ matrix obtained by using the Feshbach projection-operator formalism coincide with both the complex energies of the physical resonances and the cut-off poles of the $S$-matrix.
Pichugin Konstantin N.
Rotter Ingrid
Samsonov Boris F.
Shamshutdinova Varvara V.
No associations
LandOfFree
Feshbach projection-operator formalism to resonance scattering on Bargmann-type potentials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Feshbach projection-operator formalism to resonance scattering on Bargmann-type potentials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feshbach projection-operator formalism to resonance scattering on Bargmann-type potentials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-353768