Physics – Nuclear Physics – Nuclear Theory
Scientific paper
2009-08-26
Physics
Nuclear Physics
Nuclear Theory
9 pages, 11 figures ver2: added CERN report no., added references to relevant previous works on transport models
Scientific paper
Femtoscopy measures space-time characteristics of the particle emitting source created in relativistic heavy-ion collisions. It is argued that collective behavior of matter (radial flow) produces specific femtoscopic signatures. The one that is best known, the m_T dependence of the pion ``HBT radii'', can be explained by the alternative scenario of temperature gradients in an initial state thermal model. We identify others that can invalidate such alternatives, such as non-identical particle correlations and m_T scaling for particles of higher mass. Studies with a simple rescattering code show that as the interaction cross-section is increased the system develops collective behavior and becomes more thermalized at the same time, the two effects being the natural consequence of increased number of particle rescatterings. Repeating calculations with a more realistic rescattering model confirmed all of these conclusions and provided deeper insight into the mechanisms of collectivity buildup, showing a preference for a thermal model with uniform temperature.
Humanic Thomas J.
Kisiel Adam
No associations
LandOfFree
Femtoscopic signatures of collective behavior as a probe of the thermal nature of relativistic heavy ion collisions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Femtoscopic signatures of collective behavior as a probe of the thermal nature of relativistic heavy ion collisions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Femtoscopic signatures of collective behavior as a probe of the thermal nature of relativistic heavy ion collisions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-625327