Nonlinear Sciences – Chaotic Dynamics
Scientific paper
2004-03-03
Nonlinear Sciences
Chaotic Dynamics
No figures, 14 pages
Scientific paper
10.1016/j.physd.2004.01.002
This study is concerned with how the attractor dimension of the two-dimensional Navier--Stokes equations depends on characteristic length scales, including the system integral length scale, the forcing length scale, and the dissipation length scale. Upper bounds on the attractor dimension derived by Constantin--Foias--Temam are analysed. It is shown that the optimal attractor-dimension estimate grows linearly with the domain area (suggestive of extensive chaos), for a sufficiently large domain, if the kinematic viscosity and the amplitude and length scale of the forcing are held fixed. For sufficiently small domain area, a slightly ``super-extensive'' estimate becomes optimal. In the extensive regime, the attractor-dimension estimate is given by the ratio of the domain area to the square of the dissipation length scale defined, on physical grounds, in terms of the average rate of shear. This dissipation length scale (which is not necessarily the scale at which the energy or enstrophy dissipation takes place) can be identified with the dimension correlation length scale, the square of which is interpreted, according to the concept of extensive chaos, as the area of a subsystem with one degree of freedom. Furthermore, these length scales can be identified with a ``minimum length scale'' of the flow, which is rigorously deduced from the concept of determining nodes.
Cho Han-Ru
Shepherd Theodore G.
Tran Chuong V.
No associations
LandOfFree
Extensivity of two-dimensional turbulence does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Extensivity of two-dimensional turbulence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extensivity of two-dimensional turbulence will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-335557