Physics – Quantum Physics
Scientific paper
2011-08-03
Physics
Quantum Physics
29 pages, 15 figues
Scientific paper
We examine the prospects of discrete quantum walks (QWs) with trapped ions. In particular, we analyze in detail the limitations of the protocol of Travaglione and Milburn (PRA 2002) that has been implemented by several experimental groups in recent years. Based on the first realization in our group (PRL 2009), we investigate the consequences of leaving the scope of the approximations originally made, such as the Lamb--Dicke approximation. We explain the consequential deviations from the idealized QW for different experimental realizations and an increasing number of steps by taking into account higher-order terms of the quantum evolution. It turns out that these become dominant after a few steps already, which is confirmed by experimental results and is currently limiting the scalability of this approach. Finally, we propose a new scheme using short laser pulses, derived from a protocol from the field of quantum computation. We show that the new scheme is not subject to the above-mentioned restrictions, and analytically and numerically evaluate its limitations, based on a realistic implementation with our specific setup. Implementing the protocol with state-of-the-art techniques should allow for substantially increasing the number of steps to 100 and beyond and should be extendable to higher-dimensional QWs.
Enderlein Martin
Glueckert Jan
Huber Thomas
Matjeschk Robert
Schaetz Tobias
No associations
LandOfFree
Experimental simulation and limitations of quantum walks with trapped ions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Experimental simulation and limitations of quantum walks with trapped ions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Experimental simulation and limitations of quantum walks with trapped ions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-664620