Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
2009-06-10
J. Math. Phys. 51, 022304 (2010)
Physics
High Energy Physics
High Energy Physics - Theory
17 pages, 10 figures
Scientific paper
10.1063/1.3277189
Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted \Sigma_{n,m}, are spaces of C_n-invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's centre. The geometric properties of \Sigma_{n,m} are investigated, and it is found that \Sigma_{n,n-1} is isometric to the hyperbolic plane of curvature -1/(3\pi n). Geodesic flow on \Sigma_{n,m}, and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong, are analyzed in detail.
Krusch Steffen
Speight Martin
No associations
LandOfFree
Exact moduli space metrics for hyperbolic vortices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Exact moduli space metrics for hyperbolic vortices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exact moduli space metrics for hyperbolic vortices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-516041