Physics
Scientific paper
Dec 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011georl..3823301m&link_type=abstract
Geophysical Research Letters, Volume 38, Issue 23, CiteID L23301
Physics
Seismology: Lithosphere (1236), Seismology: Subduction Zones (1207, 1219, 1240), Tectonophysics: Continental Margins: Convergent, Tectonophysics: Dynamics Of Lithosphere And Mantle: General (1213), Tectonophysics: Subduction Zone Processes (1031, 3060, 3613, 8413)
Scientific paper
Mediterranean tectonics has been characterized by an irregular, complex temporal evolution with episodic rollback and retreat of the subducted plate followed by period of slow trench-migration. To provide insight into the geodynamics of the Calabrian arc, we image the characteristics and lithospheric structure of the convergent, Apulian and Hyblean forelands at the cusps of the arc. Specifically we investigate the crustal and lithospheric thicknesses using teleseismic S-to-p converted phases, applied to the Adria-Africa plate margin for the first time. We find that the Moho in the Apulian foreland is nearly flat at ˜30 km depth, consistent with previous P receiver functions results, and that the Hyblean crustal thickness is more complex, which can be understood in terms of the nature of the individual pieces of carbonate platform and pelagic sediments that make up the Hyblean platform. The lithospheric thicknesses range between 70-120 km beneath Apulia and 70-90 km beneath Sicily. The lithosphere of the forelands at each end of the Calabrian arc are continental in nature, buoyant compared to the subducting oceanic lithosphere and have previously been interpreted as mostly undeformed carbonate platforms. Our receiver function images also show evidence of lithospheric erosion and thinning close to Mt. Etna and Mt. Vulture, two volcanoes which have been associated with asthenospheric upwelling and mantle flow around of the sides the slab. We suggest that as the continental lithosphere resists being subducted it is being thermo-mechanically modified by toroidal flow around the edges of the subducting oceanic lithosphere of the Calabrian arc.
Miller Meghan S.
Piana Agostinetti Nicola
No associations
LandOfFree
Erosion of the continental lithosphere at the cusps of the Calabrian arc: Evidence from S receiver functions analysis does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Erosion of the continental lithosphere at the cusps of the Calabrian arc: Evidence from S receiver functions analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Erosion of the continental lithosphere at the cusps of the Calabrian arc: Evidence from S receiver functions analysis will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1608748