Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
2000-11-16
Phys.Rev. D63 (2001) 096010
Physics
High Energy Physics
High Energy Physics - Phenomenology
39 pages, 23 figures
Scientific paper
10.1103/PhysRevD.63.096010
We study the dynamics of the chiral phase transition at finite density in the Gross-Neveu (GN) model in the leading order in large-N approximation. The phase structure of the GN model in this approximation has the property that there is a tricritical point at a fixed temperature and chemical potential separating regions where the chiral transition is first order from that where it is second order. We consider evolutions starting in local thermal and chemical equilibrium in the massless unbroken phase for conditions pertaining to traversing a first or second order phase transition. We assume boost invariant kinematics and determine the evolution of the order parameter $\sigma$, the energy density and pressure as well as the effective temperature, chemical potential and interpolating number densities as a function of the proper time $\tau$. We find that before the phase transition, the system behaves as if it were an ideal fluid in local thermal equilibrium with equation of state $p=\epsilon$. After the phase transition, the system quickly reaches its true broken symmetry vacuum value for the fermion mass and for the energy density. The single particle distribution functions for Fermions and anti-Fermions go far out of equilibrium as soon as the plasma traverses the chiral phase transition. We have also determined the spatial dependence of the "pion" Green's function $<\bar{\psi}(x) \gamma_5 \psi(x) \bar{\psi}(0) \gamma_5 \psi(0)>$ as a function of the proper time.
Chodos Arthur A.
Cooper Fred
Mao Wei
Singh Amit
No associations
LandOfFree
Equilibrium and nonequilibrium properties associated with the chiral phase transition at finite density in the Gross-Neveu Model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Equilibrium and nonequilibrium properties associated with the chiral phase transition at finite density in the Gross-Neveu Model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Equilibrium and nonequilibrium properties associated with the chiral phase transition at finite density in the Gross-Neveu Model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-93719