Physics
Scientific paper
Mar 1994
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1994e%26psl.122...43k&link_type=abstract
Earth and Planetary Science Letters (ISSN 0012-821X), vol. 122, no. 1/2, p. 43-56
Physics
5
Magnetite, Magnetization, Temperature Dependence, Magnetic Anomalies, Paleomagnetism, Time Temperature Parameter
Scientific paper
The time-temperature relationship of magnetization is a subject of much interest and debate by paleomagnetists, rock magnetists, and magnetic anomaly modellers. We have investigated this relationship by studying the viscous remanent magnetization (VRM) of coarse-grained multidomain (MD) magnetite. Our experiments covered the temperature range from 22 to 400 C, times from minutes to months, and included both Australian granulite samples and multidomain magnetite samples synthesized by the glass ceramic method. VRM acquisition was found to generally increase with temperature but not always at the rate predicted from classical thermal fluctuation theories. Thermal cycling between room temperature (at which the measurements were made) and the VRM acquisition temperature sharply decreased the temperature dependence of the VRM. Room temperature VRM acquisition accelerates with time when plotted on a semilog plot, whereas at elevated temperature the curves are quasilinear against log(time) for both the natural and synthetic samples. This change in behavior may suggest a variation in the VRM acquisition mechanism as a function of temperature for MD magnetite. The granulites have a nearly linear increase in VRM acquisition rate with temperature whereas the glass ceramics display little change in the acquisition rate between 22 and 200 C, but increase by nearly a factor of 3 by 400 C. The increase in VRM of the glass ceramics between 200 and 400 C is in general qualitative agreement with thermal fluctuation theory. There was no systematic change in the rate of VRM acquisition with grain size for the multidomain magnetites used in this study. Elevated temperature (e.g., 400 C) VRM acquisition by the deep crustal granulites, if extrapolated over the Brunhes chron, would produce a magnetization of several A/m which, if true, is of the order required by models for the source of long-wavelength magnetic anomalies.
Banerjee Subir K.
Kelso Paul R.
No associations
LandOfFree
Elevated temperature viscous remanent magnetization of natural and synthetic multidomain magnetite does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Elevated temperature viscous remanent magnetization of natural and synthetic multidomain magnetite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elevated temperature viscous remanent magnetization of natural and synthetic multidomain magnetite will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1871236