Physics – Mathematical Physics
Scientific paper
2008-10-09
J.Math.Phys.50:033302,2009
Physics
Mathematical Physics
25 pages, 9 figures included
Scientific paper
10.1063/1.3081391
The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/Sqrt(2N), where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secular equation for the eigenvalue condition, we compare this effect to analogous effects occurring in general variance Wishart matrices and matrices from the shifted mean chiral ensemble. We undertake an analogous comparative study of eigenvalue separation properties when the size of the matrices are fixed and c goes to infinity, and higher rank analogues of this setting. This is done using exact expressions for eigenvalue probability densities in terms of generalized hypergeometric functions, and using the interpretation of the latter as a Green function in the Dyson Brownian motion model. For the shifted mean Gaussian unitary ensemble and its analogues an alternative approach is to use exact expressions for the correlation functions in terms of classical orthogonal polynomials and associated multiple generalizations. By using these exact expressions to compute and plot the eigenvalue density, illustrations of the various eigenvalue separation effects are obtained.
Bassler Kevin E.
Forrester Peter J.
Frankel Norman E.
No associations
LandOfFree
Eigenvalue Separation in Some Random Matrix Models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Eigenvalue Separation in Some Random Matrix Models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Eigenvalue Separation in Some Random Matrix Models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-460309