Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
1999-11-22
Eur.Phys.J. A9 (2000) 245-259
Physics
High Energy Physics
High Energy Physics - Phenomenology
31 pages, LaTeX, 10 eps figures, uses epsf.sty
Scientific paper
10.1007/s100500070042
We study the O(N) symmetric linear sigma model at finite temperature as the low-energy effective models of quantum chromodynamics(QCD) using the Cornwall-Jackiw-Tomboulis(CJT) effective action for composite operators. It has so far been claimed that the Nambu-Goldstone theorem is not satisfied at finite temperature in this framework unless the large N limit in the O(N) symmetry is taken. We show that this is not the case. The pion is always massless below the critical temperature, if one determines the propagator within the form such that the symmetry of the system is conserved, and defines the pion mass as the curvature of the effective potential. We use a new renormalization prescription for the CJT effective potential in the Hartree-Fock approximation. A numerical study of the Schwinger-Dyson equation and the gap equation is carried out including the thermal and quantum loops. We point out a problem in the derivation of the sigma meson mass without quantum correction at finite temperature. A problem about the order of the phase transition in this approach is also discussed.
Naito Kenichi
Nemoto Yukio
Oka Makoto
No associations
LandOfFree
Effective Potential of O(N) Linear Sigma Model at Finite Temperature does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Effective Potential of O(N) Linear Sigma Model at Finite Temperature, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Effective Potential of O(N) Linear Sigma Model at Finite Temperature will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-654601