Physics
Scientific paper
Oct 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011geoji.187..128h&link_type=abstract
Geophysical Journal International, Volume 187, Issue 1, pp. 128-146.
Physics
2
Transient Deformation, Radar Interferometry, Subduction Zone Processes, South America
Scientific paper
We searched for earthquake swarms in South America between 1973 and 2009 using the global Preliminary Determination of Epicenters (PDE) catalogue. Seismicity rates vary greatly over the South American continent, so we employ a manual search approach that aims to be insensitive to spatial and temporal scales or to the number of earthquakes in a potential swarm. We identify 29 possible swarms involving 5-180 earthquakes each (with total swarm moment magnitudes between 4.7 and 6.9) within a range of tectonic and volcanic locations. Some of the earthquake swarms on the subduction megathrust occur as foreshocks and delineate the limits of main shock rupture propagation for large earthquakes, including the 2010 Mw 8.8 Maule, Chile and 2007 Mw 8.1 Pisco, Peru earthquakes. Also, subduction megathrust swarms commonly occur at the location of subduction of aseismic ridges, including areas of long-standing seismic gaps in Peru and Ecuador. The magnitude-frequency relationship of swarms we observe appears to agree with previously determined magnitude-frequency scaling for swarms in Japan. We examine geodetic data covering five of the swarms to search for an aseismic component. Only two of these swarms (at Copiapó, Chile, in 2006 and near Ticsani Volcano, Peru, in 2005) have suitable satellite-based Interferometric Synthetic Aperture Radar (InSAR) observations. We invert the InSAR geodetic signal and find that the ground deformation associated with these swarms does not require a significant component of aseismic fault slip or magmatic intrusion. Three swarms in the vicinity of the volcanic arc in southern Peru appear to be triggered by the Mw= 8.5 2001 Peru earthquake, but predicted static Coulomb stress changes due to the main shock were very small at the swarm locations, suggesting that dynamic triggering processes may have had a role in their occurrence. Although we identified few swarms in volcanic regions, we suggest that particularly large volcanic swarms (those that could be detected using the PDE catalogue) occur in areas of infrequent eruption and may be related to large regional fault zones.
Holtkamp S. G.
Lohman Rowena B.
Pritchard Mathew E.
No associations
LandOfFree
Earthquake swarms in South America does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Earthquake swarms in South America, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Earthquake swarms in South America will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1489665