Physics
Scientific paper
Jun 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008em%26p..102..199e&link_type=abstract
Earth, Moon, and Planets, Volume 102, Issue 1-4, pp. 199-203
Physics
Zodiacal Cloud, Zodiacal Dust, Dust Dynamics
Scientific paper
Asteroidal dust particles resulting from family-forming events migrate from their source locations in the asteroid belt inwards towards the Sun under the effect of Poynting-Robertson (PR) drag. Understanding the distribution of these dust particle orbits in the inner solar system is of great importance to determining the asteroidal contribution to the zodiacal cloud, the accretion rate by the Earth, and the threat that these particles pose to spacecraft and satellites in near-Earth space. In order to correctly describe this distribution of orbits in the inner solar system, we must track the dynamical perturbations that the dust particle orbits experience as they migrate inwards. In a seminal paper Öpik (1951) determines that very few of the μm-cm sized dust particles suffer a collision with the planet face as they decay inwards past Mars. Here we re-analyze this problem, considering additionally the likelihood that the dust particle orbits pass through the Hill sphere of Mars (to various depths) and experience potentially significant perturbations to their orbits. We find that a considerable fraction of dust particle orbits will enter the Hill sphere of Mars. Furthermore, we find that there is a bias with inclination, particle size, and eccentricity of the particle orbits that enter the Martian Hill sphere. In particular the bias with inclination may create a bias towards higher-inclination sources in the proportions of asteroid family particles that reach near-Earth space.
Dermott Stanley F.
Espy Ashley J.
Kehoe Thomas J. J.
No associations
LandOfFree
Dynamical Effects of Mars on Asteroidal Dust Particles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dynamical Effects of Mars on Asteroidal Dust Particles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamical Effects of Mars on Asteroidal Dust Particles will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1247178