Physics – Quantum Physics
Scientific paper
2011-12-22
Physics
Quantum Physics
6 pages, 3 figures + Supplementary Info (4 pages, 3 figures)
Scientific paper
We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located less than ~100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a range of 300 GHz. Using high-resolution emission spectroscopy, we observe electrical tuning of the strengths of both cycling and spin-altering transitions. Under resonant excitation, we apply dynamic feedback to stabilize the ZPL frequency. The transition is locked over several minutes and drifts of the peak position on timescales greater than ~100 ms are reduced to a fraction of the single-scan linewidth, with standard deviation as low as 16 MHz (obtained for an NV in bulk, ultra-pure diamond). These techniques should improve the entanglement success probability in quantum communications protocols.
Acosta Monica Vazquez
Beausoleil Raymond G.
Faraon Andrei
Fu K.-M. C.
Ganesan K.
No associations
LandOfFree
Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-191699