Dynamic Foot Pressure as a Countermeasure to Muscle Atrophy

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Mechanical unloading of skeletal muscle (SKM) as a consequence of space flight or ground-based analogues, such as human bedrest and rodent hindlimb suspension (HLS) models, induces SKM atrophy particularly affecting the anti-gravity musculature of the lower limbs. In the context of manned space flight, the subsequent loss of muscle strength and functionality will pose operational implications jeopardizing mission success. Exercise, currently the primary muscle degradation countermeasure, has not proven completely effective in preventing muscle atrophy. It is therefore imperative that some other forms of in- flight countermeasure be also developed to supplement the prescribed exercise regimen the astronauts follow during spaceflight. Previous work in both humans and rats has shown that mechanical stimulation of the soles of the feet increases neuromuscular activation in the lower limb musculature and that such stimulation results in the limited prevention of atrophy in the soleus muscle of unloaded rats. This study was designed to investigate the effect of cutaneous mechanoreceptor stimulation on hindlimb unloading- induced SKM atrophy in rats. It was hypothesized that mechanical stimulation of the plantar surface of the rat foot during hindlimb suspension (HLS), utilizing a novel stimulation paradigm known as Dynamic Foot Pressure (DFP), would attenuate unloading-induced SKM atrophy. Mature adult male Wistar rats were randomly assigned to four groups of 10 rats each as follows: sedentary controls (Ctrl), hindlimb suspended only (HLS), hindlimb suspended wearing an inflatable boot (HLS-IFL) and hindlimb suspended rats wearing a non-inflatable boot (HLS-NIFL). The stimulation of mechanoreceptors was achieved by applying pressure to the plantar surface of the foot during the 10-day period of HLS using a custom-built boot. The anti-atrophic effects of DFP application was quantified directly by morphological (muscle wet weight, myofiber cross-sectional area, neuromuscular junction size/density), histochemical (myofiber type distribution) and biochemical (myosin heavy chain-MHC isoform content, muscle collagen concentration and maturation) analysis techniques in the soleus, medial gastrocnemius, and tibialis anterior muscles. The results indicated that the application of DFP ameliorated hindlimb-induced SKM atrophy. It is postulated that this effect was achieved via proprioceptive pathways as a consequence of DFT mimicking the neuromuscular activity/contraction patterns normally induced by load bearing in specific anti-gravity muscles of the lower limbs in a terrestrial environment. The underlined concept promises to serve as the basis for developing a novel supplemental to exercise during space flight countermeasure as well as an effective rehabilitation technique for bed-ridden patients.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Dynamic Foot Pressure as a Countermeasure to Muscle Atrophy does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Dynamic Foot Pressure as a Countermeasure to Muscle Atrophy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic Foot Pressure as a Countermeasure to Muscle Atrophy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1332145

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.