Physics – Biological Physics
Scientific paper
1999-12-04
Phys. Rep. 349:395-446 (2001)
Physics
Biological Physics
LaTeX, 60 pages, 14 eps figures, expanded introduction, minor corrections, submitted to Phys. Rep
Scientific paper
10.1016/S0370-1573(00)00118-6
We study self-replicating molecules under externally varying conditions. Changing conditions such as temperature variations and/or alterations in the environment's resource composition lead to both non-constant replication and decay rates of the molecules. In general, therefore, molecular evolution takes place in a dynamic rather than a static fitness landscape. We incorporate dynamic replication and decay rates into the standard quasispecies theory of molecular evolution, and show that for periodic time-dependencies, a system of evolving molecules enters a limit cycle for $t\to\infty$. For fast periodic changes, we show that molecules adapt to the time-averaged fitness landscape, whereas for slow changes they track the variations in the landscape arbitrarily closely. We derive a general approximation method that allows us to calculate the attractor of time-periodic landscapes, and demonstrate using several examples that the results of the approximation and the limiting cases of very slow and very fast changes are in perfect agreement. We also discuss landscapes with arbitrary time dependencies, and show that very fast changes again lead to a system that adapts to the time-averaged landscape. Finally, we analyze the dynamics of a finite population of molecules in a dynamic landscape, and discuss its relation to the infinite population limit.
Martinetz Thomas
Ronnewinkel Christopher
Wilke Claus O.
No associations
LandOfFree
Dynamic Fitness Landscapes in Molecular Evolution does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dynamic Fitness Landscapes in Molecular Evolution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic Fitness Landscapes in Molecular Evolution will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-166246