Physics
Scientific paper
Jun 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011jgra..11606213s&link_type=abstract
Journal of Geophysical Research, Volume 116, Issue A6, CiteID A06213
Physics
Magnetospheric Physics: Numerical Modeling, Magnetospheric Physics: Substorms, Magnetospheric Physics: Auroral Phenomena (2407), Magnetospheric Physics: Magnetospheric Configuration And Dynamics, Magnetospheric Physics: Solar Wind/Magnetosphere Interactions
Scientific paper
We reproduce a magnetospheric reconfiguration under southward interplanetary magnetic field (IMF) conditions using numerical magnetohydrodynamic simulations. To investigate the relative displacements of the geomagnetic conjugate points, we trace both footprints of the geomagnetic field lines during the magnetospheric reconfiguration under positive and negative IMF By conditions. Several substormlike features, namely, the formation of a near-Earth neutral line, a fast earthward flow, and tailward releases of the plasmoid, occur about 1 h after a southward turning of the IMF. The surveyed field line traced from the near-Earth magnetotail was strongly distorted duskward in the north and south after the substorm onset for positive and negative IMF By, respectively. The maximum of the relative longitudinal displacement of both footprints is 4.5 and 5.5 h in magnetic local time for positive and negative IMF By, respectively. While observational studies have indicated that the IMF orientation is the main factor controlling the relative displacement of the conjugate points, the present simulation-based study with a constant IMF orientation shows for the first time that the combined effects of plasma pressure, magnetic field intensity, and the field-aligned current density distribution along the field line are likely to be major factors controlling the relative displacement of conjugate points.
Ebihara Yasuhiro
Fujita Shigeo
Higuchi Takeo
Kadokura Akira
Kitamoto A.
No associations
LandOfFree
Displacement of conjugate points during a substorm in a global magnetohydrodynamic simulation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Displacement of conjugate points during a substorm in a global magnetohydrodynamic simulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Displacement of conjugate points during a substorm in a global magnetohydrodynamic simulation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-921410