Physics – Mathematical Physics
Scientific paper
2011-11-30
SIGMA 8 (2012), 008, 14 pages
Physics
Mathematical Physics
Scientific paper
10.3842/SIGMA.2012.008
Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1)-dimensional case, the corresponding system can be extended to 2x2 matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.
Goda Hiroaki
Miki Hiroshi
Tsujimoto Satoshi
No associations
LandOfFree
Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-9341