Development of substorm bulges during different solar wind structures

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6

Scientific paper

Using data from WIND spacecraft, we investigated the difference in substorm bulge development during different types of solar wind flow: solar wind recurrent streams (RS), corotating interaction regions (CIR), magnetic clouds (MC), and the region of interaction of magnetic clouds with undisturbed solar wind (Sheath). The RS/CIR and MC/Sheath structures were examined for the periods December 1996-July 1997; January 2000-December 2000; October 2001. All available auroral substorms observed by the Ultra Violet Imager onboard the Polar spacecraft during these periods were studied. It is shown that the largest latitudinal and longitudinal sizes of the auroral bulge expansions are during CIR and Sheath intervals. We found a difference in auroral bulge parameters for MC- and RS-associated substorms. In contrast to substorms associated with RS, the latitudinal size of the auroral bulge during MC is smaller, but longitudinal size is larger. As consequence, the ratio between longitudinal and latitudinal sizes for MC-associated substorms is also larger. We suggest that the latter feature is explained by different configuration of the near-Earth magnetotail during RS and MC.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Development of substorm bulges during different solar wind structures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Development of substorm bulges during different solar wind structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Development of substorm bulges during different solar wind structures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1111915

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.