Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010spie.7735e.171z&link_type=abstract
Ground-based and Airborne Instrumentation for Astronomy III. Edited by McLean, Ian S.; Ramsay, Suzanne K.; Takami, Hideki. Pro
Astronomy and Astrophysics
Astronomy
1
Scientific paper
Doppler searches are extending to the near infrared to detect and characterize habitable planets around low mass stars. We present an optical design and performance of a near-IR Doppler instrument. This instrument has two operating modes covering 0.8-1.8 microns. One mode is called IRET, which consists of a fix-delay interferometer and a crossdispersed echelle spectrograph to simultaneously cover 0.8-1.35 microns with a spectral resolution of R=22000 on a 2k x 2k H2RG IR array. The other mode is called FIRST, which uses a silicon immersion grating as the main disperser to simultaneously cover 1.4-1.8 microns with a spectral resolution of R=55000 on the same detector as IRET. The triplepass parabola white pupil design is used to restrain background scatter radiation with stable configuration for precision radial velocity measurements. We used high index standard glasses for camera optics and VPH gratings as crossdispersers in both modes. The FIRST mode can be switched in and out conveniently while the IRET mode is kept without moving parts to increase its stability. This instrument is designed to deliver up to 1 m/s Doppler precision RV measurements of nearby bright M dwarfs at the Apache Point Observatory 3.5 meter telescope. The instrument is expected to be operational in the spring 2011.
Ge Jian
Groot J. J.
Nguyen Duy Cuong
Wang Ji
Zhao Bo
No associations
LandOfFree
Design of a near-IR Doppler instrument for planet searches does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Design of a near-IR Doppler instrument for planet searches, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Design of a near-IR Doppler instrument for planet searches will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1381389