Physics – Nuclear Physics – Nuclear Theory
Scientific paper
2012-02-21
Physics
Nuclear Physics
Nuclear Theory
27 pages
Scientific paper
In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation using the method of moments. The main difference between our approach and the traditional 14-moment approximation is that we will not close the fluid-dynamical equations of motion by truncating the expansion of the distribution function. Instead, we keep all terms in the moment expansion. The reduction of the degrees of freedom is done by identifying the microscopic time scales of the Boltzmann equation and considering only the slowest ones. In addition, the equations of motion for the dissipative quantities are truncated according to a systematic power-counting scheme in Knudsen and inverse Reynolds number. We conclude that the equations of motion can be closed in terms of only 14 dynamical variables, as long as we only keep terms of second order in Knudsen and/or inverse Reynolds number. We show that, even though the equations of motion are closed in terms of these 14 fields, the transport coefficients carry information about all the moments of the distribution function. In this way, we can show that the particle-diffusion and shear-viscosity coefficients agree with the values given by the Chapman-Enskog expansion.
Denicol Gabriel S.
Molnar Emil
Niemi Harri
Rischke Dirk H.
No associations
LandOfFree
Derivation of transient relativistic fluid dynamics from the Boltzmann equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Derivation of transient relativistic fluid dynamics from the Boltzmann equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Derivation of transient relativistic fluid dynamics from the Boltzmann equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-422706