Physics – Atmospheric and Oceanic Physics
Scientific paper
2007-10-06
Physics
Atmospheric and Oceanic Physics
Scientific paper
A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic models can be recovered by a simple asymptotic expansion of this operator, in function of the shallowness parameter (shallow water limit) or the steepness parameter (deep water limit). Based on this method, a new two-dimensional fully dispersive model for small wave steepness is also derived, which extends to uneven bottom the approach developed by Matsuno \cite{matsuno3} and Choi \cite{choi}. This model is still valid in shallow water but with less precision than what can be achieved with Green-Naghdi model, when fully nonlinear waves are considered. The combination, or the coupling, of the new fully dispersive equations with the fully nonlinear shallow water Green-Naghdi equations represents a relevant model for describing ocean wave propagation from deep to shallow waters.
Bonneton Philippe
Lannes David
No associations
LandOfFree
Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-140493