Density of defects and the scaling law of the entanglement entropy in quantum phase transition of one dimensional spin systems induced by a quench

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 figures, Accepted in Phys. Rev. A

Scientific paper

We have studied quantum phase transition induced by a quench in different one dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one dimensional spin chains. At the critical region, the entanglement entropy of a block of $L$ spins with the rest of the system is also estimated which is found to increase logarithmically with $L$. The dependence on the quench time puts a constraint on the block size $L$. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z-axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Density of defects and the scaling law of the entanglement entropy in quantum phase transition of one dimensional spin systems induced by a quench does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Density of defects and the scaling law of the entanglement entropy in quantum phase transition of one dimensional spin systems induced by a quench, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Density of defects and the scaling law of the entanglement entropy in quantum phase transition of one dimensional spin systems induced by a quench will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-606698

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.